Increased c-fos expression in spinal neurons after irritation of the lower urinary tract in the rat.

نویسندگان

  • L A Birder
  • W C de Groat
چکیده

This study utilized neuronal c-fos expression to examine the spinal pathways involved in processing nociceptive and non-nociceptive afferent input from the lower urinary tract (LUT) of the urethane-anesthetized rat. C-fos protein was detected immunocytochemically in only a small number of cells (< 2 cells/L6 section) in control animals. However, chemical irritation with 1% acetic acid or mechanical stimulation of the LUT markedly increased the number of c-fos-positive neurons (56-180 cells/L6 section) in four regions of the caudal lumbosacral (L6-S1) spinal cord: medial dorsal horn (MDH), lateral dorsal horn, dorsal commissure (DCM), and sacral parasympathetic nucleus (SPN). Only small numbers of c-fos-positive cells were detected in rostral lumbar segments, a region that is thought to receive nociceptive input from the LUT via afferent pathways in sympathetic nerves. The distribution of c-fos-positive cells in the L6 spinal cord varied according to the stimulus (i.e., urethral catheter, bladder distension, or chemical irritation). Distension of the urinary bladder increased the number of c-fos-positive cells mainly in DCM and SPN regions of the cord. In contrast, irritation of the LUT increased c-fos expression largely in DCM and MDH areas. Spinal cord transection (T8 level) did not alter the c-fos expression induced by a catheter or chemical irritation, indicating that gene expression was mediated by spinal pathways. Denervation experiments showed that c-fos expression was induced by activation of afferent pathways in the pelvic and pudendal nerves. These results suggest that neurons in several regions of the spinal cord are involved in processing afferent input from different parts of the LUT. Neurons in the DCM appear to have an important role since they respond to both nociceptive and non-nociceptive inputs and to visceral (pelvic nerve) and somatic (pudendal nerve) afferent pathways. Thus, these neurons may be involved in the mechanisms of visceral-somatic referred pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats

Background: Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in consciou...

متن کامل

NK(1) receptor and its interaction with NMDA receptor in spinal c-fos expression after lower urinary tract irritation.

The role of neurokinin 1 (NK(1)) receptor and possible interaction between NK(1) and N-methyl-D-aspartic acid (NMDA) glutamatergic receptors were investigated on spinal c-fos expression after lower urinary tract irritation with acetic acid infusion in rats. At both levels of the first (L(1)) and sixth lumbar (L(6)) spinal cord, where most of hypogastric nerve and pelvic nerve afferent terminals...

متن کامل

Developmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations

Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...

متن کامل

Developmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations

Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...

متن کامل

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 12 12  شماره 

صفحات  -

تاریخ انتشار 1992